Example 1) Solve $(x^2 - xy) dy = (xy + y^2) dx$

Solution 1) We have $(x^2 - xy) dy = (xy + y^2) dx ... (1)$

The differential equation (1) is a homogeneous equation in x and y.

From (1), we have
$$\frac{dy}{dx} = \frac{xy + y^2}{x^2 - xy}$$
.... (2)

Now put y = vx, then
$$\frac{dy}{dx}$$
 = v + x. $\frac{dy}{dx}$

From (2), v + x.
$$\frac{dy}{dx} = \frac{x \cdot vx + v^{2x^2}}{x^2 - x \cdot vx} = \frac{v + v^2}{1 - v}$$

Or,
$$\times \frac{dy}{dx} = \frac{v + v^2}{1 - v} - v = \frac{v + v^2 - v + v^2}{1 - v} = \frac{2v^2}{1 - v}$$

Or,
$$\frac{1-v}{2v^2}$$
 dv = $\frac{dy}{dx}$ or, $\frac{dx}{x} = \frac{1}{2}\left(\frac{1}{v^2} - \frac{1}{v}\right)$ dv

Integrating,
$$\log x = \frac{1}{2} \left(-\frac{1}{v} - logv \right) + \frac{1}{2} \log C$$

Or, 2 Log x = -
$$\frac{1}{v}$$
 - logv + log C or, log x^2 + log v - log C = - $\frac{1}{v}$

OR, Log
$$\left(\frac{vx^2}{C}\right)$$
 = - $\frac{x}{y}$ $y=vx$ or, $\frac{vx^2}{C}$ e $\frac{x}{y}$, or, xy = Ce - $\frac{x}{y}$

Which is the required general solution of homogeneous equation examples?